SA WG2 Temporary Document

Page 1

SA WG2 Meeting #127-bis
S2-185461
May 28 – Jun 1, 2018, Newport Beach, US

Source:
NTT DOCOMO
Title:
New Solution: Temporary bindings between the service instances
Document for:
Approval
Agenda Item:
6.19
Work Item / Release:
FS_eSBA / Rel-16
Abstract of the contribution: This contribution proposes a new Solution that provides a mechanism for the service instances to create temporary bindings between the instances, and a mechanism to release such bindings.
1. Discussion

In 5GS some e2e signalling flows consist of a sequence of services and/or service operations between the same Network Functions. For example in Release 15 in UE Requested PDU Session Establishment (subclause 4.3.2.2 in TS 23.502), typically four service operations are performed in sequence between AMF and SMF: Nsmf_PDUSession_CreateSMContext, Namf_Communication_N1N2MessageTransfer, Nsmf_PDUSession_UpdateSMContext and Namf_EventExposure_Subscribe. In stateless design, if the service instances would need to store and retrieve the session state (UE context) from an external storage (UDSF) between all of the above transactions, this causes unnecessary processing delay. Therefore, in scenarios where the next service operation is expected to come soon after the previous is completed, it must be possible to store the session state locally and force the counterpart service instance to re-use the same service instance of the provider for the next service operation.

This solution provides a mechanism for the service instances to create temporary bindings between the instances, and a mechanism to release such bindings.

2 Proposal
It is proposed to add the following text to TR 23.742:
* * * Start of 1st Change * * *

4.1
Architectural Requirements

Editor's note:
This clause will list general architectural requirements for this study.
Services shall be fully self-contained, reusable, and shall have independent life-cycle management (e.g. for scaling, healing, etc.).
The services deployed within a Network Slice shall be able to communicate efficiently with minimal information about the Network Slice configuration.

The service consumer must be able to address the service provider using the service identifier, not based on the location of the provider such as IP address.

The service instances must be able to create temporary bindings that are carried over a sequence of service operations. The service instances must be able to release such temporary bindings.
* * * End of 1st Change * * *

* * * Start of 2nd Change – All text is new * * *
6.X
Solution #X: Temporary bindings between the service instances
6.X.1
Introduction
Editor's note:
This clause lists the key issue(s) addressed by this solution.

This solution is to address the Key Issue 4 and in particular the impact on service operation to support scenarios with and without long-living UE-specific bindings between service instances.

In Release 15, long-living UE-specific bindings exist between the service instances. For example, in communication via N11 interface, the AMF stores the association between the PDU Session ID and the address of the SMF instance (IP address or FQDN), and SMF stores the association between PDU Session ID and the address of the AMF instance (IP address or FQDN) of the serving AMF. This means for a particular PDU Session, the AMF instance is sticky with the SMF instance address, and likewise the SMF instance is sticky with the AMF instance address. The same may apply in general for any communication between NF consumer and NF provider.

The 5GS architecture in Release 16 needs to support cloud deployments (fully virtualized) that can make use of cloud operation mechanisms, e.g. auto-scaling, self-healing in line with e.g. ETSI NFV specifications. In virtualized environments, the services provided by the service instances may move between the machines where the services are deployed, this may be due to auto-scaling (adding or removing the machines and/or the service instances), self-healing, or due to failures. The IP address of the service instance can change in these occasions, thus the service instances should not store the IP address or the FQDN of the other service instance after the transaction has been completed. Thus the service consumer must be able to address the service provider using the service identifier, not based on the location such as IP address.
Another requirement for 5GS architecture in Release 16 is to support a design paradigm of stateless service instances; where any service instance in the cluster of instances can process the service request, and where the selected service instance after processing the task stores the session data externally (e.g. in UDSF). Thus no binding relations should exist between individual service instances. The service instances should not store the instance ID of the other service instance after the service request has been completed.
However, in 5GS some e2e signalling flows consist of a sequence of services and/or service operations between the same Network Functions. For example in Release 15 in UE Requested PDU Session Establishment (subclause 4.3.2.2 in TS 23.502), typically four service operations are performed in sequence between AMF and SMF: Nsmf_PDUSession_CreateSMContext, Namf_Communication_N1N2MessageTransfer, Nsmf_PDUSession_UpdateSMContext and Namf_EventExposure_Subscribe. In stateless design, if the service instances would need to store and retrieve the session state (UE context) from an external storage (UDSF) between all of the above transactions, this causes unnecessary processing delay. Therefore, in scenarios where the next service operation is expected to come soon after the previous is completed, it must be possible to store the session state locally and force the counterpart service instance to re-use the same service instance of the provider for the next service operation.
This solution provides a mechanism for the service instances to create temporary bindings between the instances, and a mechanism to release such bindings.
6.X.2
High-level Description

Editor's note:
This clause outlines solution principles, assumptions and high-level architectures, etc.

The following figures describe the principles in the solution. The first figure describes how the service provider is able to establish a temporary binding as part of the service response.

[image: image6.png]AMF service instance

1ID1

1. Nsmf_PDUSession_CreateSMContext Request

SMF

service instance

(binding={Nami_Communication, 1D1})
2. Nsmf_PDUSession_CreateSMContext Response

1ID1

Binding=Nsrmi_PDUSession, TD2))

3. Namf_Communication_N1N2VessageTransfer Request

1ID2

To DT

4. Namf_Communication_N1N2VessageTransfer Response

1ID1

5.Nsmf_PDUSession_UpdateSMContext Request o D2

1ID2

(release binding=Nami_Communication)

6 _Nsmf_PDUSession_UpdateSMContext Response

1ID3

(release binding=Nsmi_PDUSession)

7. Namf_EventExposure_Subscribe Request

1ID2

8. Namf_EventExposure_Subscribe Response

1ID2

Figure 6.X.2-1: Creating the binding in Service Response
1.
Service consumer initiates a service request for Service1 (S1). As there is no prior binding between the service instances, the service consumer discovers the service instance of S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of service instance 1 (IID1). Service consumer targets the service request to IID1.

2.
Instance IID1 wants to create a temporary binding with service consumer, and returns the binding information in the service response. The binding information includes the Service S1 and the corresponding Instance ID.
3.
For the next service operation with the same service, the service consumer does not discover the service instance but instead uses the IID1 as a target for the service requests.
4.
The Instance IID1 responds with an indication that the binding with the Service S1 can be released.
5.
As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.

6.
Next time the NF consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.
The next figure describes how the service consumer is able to establish a temporary binding as part of the service request.

[image: image2]
Figure 6.X.2-2: Creating the binding in Service Request
1.
Service consumer initiates a service operation for Service 1 (S1). As there is no prior binding between the service instances, the service consumer discovers the instance of service provider for S1 e.g. using NRF. The service discovery returns the Instance ID (IID) of IIDx. Service consumer targets the service request to IIDx.

As service consumer wants to establish a temporary binding with IID1, it indicates the list of services and the corresponding Instance ID of the service instance that provides this service.
2.
The IIDx sends a service response.

3.
Next time the service instance of IIDx needs to send a service operation with the indicated service in step 1, the service consumer does not discover the service instance for the S1, but instead uses the indicated service instance as a target for the service requests (IID1 in this example).

4.
The IID1 responds with an indication that the binding to S1 can be released.
5.
As it may be the service consumer did not send the service request in step 3, the IID1 can also release the binding proactively e.g. due to timeout without receiving the service request.

6.
Next time the service consumer needs to send a service operation for the same service, the service consumer discovers the service instance again for Service S1 (e.g. using NRF), and uses the discovered service instance as a target for the service requests (IID2 in this example). It is assumed the IID1 and IID2 can share the session state e.g. via UDSF.

6.X.3
Illustrated Procedures

Editor's note:
This clause describes related high-level procedures for the solution.

The figure below shows an example flow how the mechanisms described in this solution can be applied to the communication between AMF and SMF in UE Requested PDU Session establishment procedure so that temporary binding can be created between the service instances of AMF and SMF.

[image: image3]
Figure 6.X.3-1: The solution applied to PDU Session Establishment procedure

1.
The AMF instance which was initiated to process the PDU Session Establishment Request discovers the SMF instance for PDUSession service from NRF. The NRF provides the Instance ID of the selected service instance. The AMF targets the Nsmf_PDUSession_CreateSMContext Request to the instance IID2 of the SMF. The AMF includes in the request an Instance ID and an indication of the service(s) for which this instance ID must be used. In this example the AMF indicates it wants the AMF Instance IID1 to be used to request Namf_Communication service. The SMF stores the AMF instance ID and the service(s) associated to the AMF Instance ID.
2.
The SMF responds with the Nsmf_PDUSession_CreateSMContext Response. SMF provides the SM Context identifier. The SM context identifier shall not include the IP address of the SMF service instance. The SMF includes in the response an indication that the same SMF Instance of IID2 must be used with the upcoming Nsmf_PDUSession service operations.
3.
The SMF reserves the resources from the UPF. As SMF received the AMF Instance ID (IID1) in step 1, the SMF provides the AMF Instance ID to the NRF to resolve the IP address of the AMF service instance IID1 providing the Namf_Communication service. The SMF sends Namf_Communication_N1N2MessageTransfer Request to this AMF service instance.

4.
The AMF responds with the Namf_Communication_N1N2MessageTransfer Response. In this example the AMF does not update the binding information so the binding with Instance ID provided in step 1 continues, and must be used for possible upcoming Namf_Communication service operations.
5.
The RAN responds to AMF with the N2 message including the N3 Tunnel Information. As the AMF received the SMF Instance ID in step 2, the AMF provides the SMF Instance ID of IID2 to the NRF to resolve the IP address of the SMF service instance of IID2 providing the Nsmf_PDUSession service. The AMF sends the Nsmf_PDUSession_UpdateSMContext Request to the corresponding IP address. In typical scenario the AMF includes an indication that the previous binding of Namf_Communication service with IID1 can now be released, so the SMF knows to use the NRF to discover the AMF instance for any further service requests for Namf_Communication service. This ensures that when the SMF needs to trigger the release of the PDU Session, the SMF targets the related Namf_Communication_N1N2MessageTransfer service operation to the AMF instance discovered via NRF, and not to the same Instance of IID1 indicated in step 1.
6.
The SMF responds with the Nsmf_PDUSession_UpdateSMContext Response. In this example the SMF indicates that the binding to Instance ID of IID2 provided in step 2 shall be released, so the AMF knows to use the NRF to discover the SMF for any further service request of Nsmf_PDUSession service.
7.
The SMF subscribes to the UE mobility event notification from the AMF (e.g. location reporting, UE moving into or out of Area Of Interest), by invoking Namf_EventExposure_Subscribe service operation. As the AMF has not provided binding for this service, the SMF targets the request to the AMF instance discovered via NRF.
8.
A new AMF instance is selected to process the subscription to the UE mobility event notification. The AMF responds with the Subscription Correlation ID, and optionally with a binding indication.

6.X.4
Impacts on existing NFs, NF services and interfaces

Editor's note:
This clause describes impacts to existing services and interfaces.

6.X.5
Evaluation

Editor's note:
This clause provides an evaluation of the solution.
* * * End of Changes * * *

3GPP

SA WG2 TD

[image: image1][image: image4.png]1. $1_Senvice Request(binding=(S2, ID1})

S1 service > S1 service
consumer (IID1) |g-=1=5erice Responsel provider (IIDx)

3. 52_Service Request()to ID1

S2 service S2 service
i 4.52_S¢ R ! binding=S2;
provider (IID1) _Service Response(release binding=52) »| consumer (IIDy)
S1 service S1 service

consumer (lID1) provider (IIDy)

6.52_Senvice Request()

S2 service S2 service
provider (ID2) | - S2-Sewice Response() consumer (IIDy)

[image: image5.png]1. S1_Service Request() -
S1 service > S1 service

consumer (IIDx) 2. S1_Service Response(binding=S1, ID1) provider (IID1)

3.S1_Service Request()to ID1

S1 service 4.51_S¢ R (rele bindi S1) i S1 service
envice Response(release binding= :
consumer (lIDy) = il g provider (IID1)

S1 service S1 service
consumer (lIDy) v provider (IID1)

6.S1_Senvice Request()

S1 service o1 s) > S1 service
enice Response ;
consumer (IDz) = ’ provider (1ID2)

